In the Chain of Responsibility Pattern, objects using and implementing an interface (one or more methods) are intentionally loosely coupled. A set of objects that implement the interface are organised in a list (or in rare cases a tree). Objects using the interface make requests from the first implementor object. It will decide whether to perform any action itself and whether to pass the request further down the line in the list (or tree). Sometimes a default implementation for some request is also coded into the pattern if none of the implementors respond to the request.
1. Example
In this example, the script sends requests to the lister
object. The lister
points to a UnixLister
object. If it can’t handle the request, it sends the request to the WindowsLister
. If it can’t handle the request, it sends the request to the DefaultLister
.
class UnixLister {
private nextInLine
UnixLister(next) { nextInLine = next }
def listFiles(dir) {
if (System.getProperty('os.name') == 'Linux') {
println "ls $dir".execute().text
} else {
nextInLine.listFiles(dir)
}
}
}
class WindowsLister {
private nextInLine
WindowsLister(next) { nextInLine = next }
def listFiles(dir) {
if (System.getProperty('os.name') == 'Windows XP') {
println "cmd.exe /c dir $dir".execute().text
} else {
nextInLine.listFiles(dir)
}
}
}
class DefaultLister {
def listFiles(dir) {
new File(dir).eachFile { f -> println f }
}
}
def lister = new UnixLister(new WindowsLister(new DefaultLister()))
lister.listFiles('Downloads')
The output will be a list of files (with slightly different format depending on the operating system).
Here is a UML representation:

Variations to this pattern:
-
we could have an explicit interface, e.g.
Lister
, to statically type the implementations but because of duck-typing this is optional -
we could use a chain tree instead of a list, e.g.
if (animal.hasBackbone())
delegate toVertebrateHandler
else delegate toInvertebrateHandler
-
we could always pass down the chain even if we processed a request
-
we could decide at some point to not respond and not pass down the chain
-
we could use Groovy’s meta-programming capabilities to pass unknown methods down the chain